Preliminary communication

A TRINUCLEAR CLUSTER OF OSMIUM AND MOLYBDENUM. CRYSTAL STRUCTURE OF THE CO-CRYSTALLIZED MOLECULES $\mathrm{MoOs}_{2}(\mathrm{CO})_{11}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}$ AND $\left[(\mathrm{MeO})_{3} \mathrm{P}\right](\mathrm{OC})_{4} \mathrm{OsMo}(\mathrm{CO})_{5}$

HARRY B. DAVIS, FREDERICK W.B. EINSTEIN, VICTOR J. JOHNSTON and ROLAND K. POMEROY
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada)

(Received September 8th, 1986)

Summary

The crystal structure of $\mathrm{MoOs}_{2}(\mathrm{CO})_{11}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \cdot\left[(\mathrm{MeO})_{3} \mathrm{P}\right](\mathrm{OC})_{4} \mathrm{OsMo}(\mathrm{CO})_{5}$ is comprised of a slightly disordered, triangular cluster with a $\mathrm{Mo}(\mathrm{CO})_{5}$ and two $\mathrm{Os}(\mathrm{CO})_{3}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]$ moieties ($\mathrm{Os}-\mathrm{Mo}$ bond lengths are 3.041(2) and 3.079(2) \AA) together with a $\left[(\mathrm{MeO})_{3} \mathrm{P}\right](\mathrm{OC})_{4} \mathrm{OsMo}(\mathrm{CO})_{5}$ molecule having a donor-acceptor Os-Mo bond of length 3.075(2) A.

Recent studies in these laboratories have shown that neutral 18 -electron organometallic compounds can act as ligands to give complexes with unbridged donor-acceptor metal-metal bonds [1,2]. One such complex for which we have reported the synthesis and structure is $\left(\mathrm{Me}_{3} \mathrm{P}\right)(\mathrm{OC})_{4} \mathrm{OsW}(\mathrm{CO})_{5}$ [2]. We have prepared a number of analogues of this compound of the type $\mathrm{L}(\mathrm{OC})_{4} \mathrm{OsM}(\mathrm{CO})_{5}$ ($\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W} ; \mathrm{L}=$ phosphorus donor ligand) [3]. In the preparation of some of the molybdenum and tungsten complexes an intensely colored byproduct was formed although the quantities were insufficient for characterization. However, in one preparation of $\left[(\mathrm{MeO})_{3} \mathrm{P}\right](\mathrm{OC})_{4} \mathrm{OsMo}(\mathrm{CO})_{5}$ (2), from $\mathrm{Os}(\mathrm{CO})_{4}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]$ * and $\mathrm{Mo}(\mathrm{CO})_{5}(\mathrm{THF})$ in hexane, three deep-red crystals were obtained in the crude product. Here we report the X-ray structure analysis of one of those crystals that reveal it to be a $1 / 1$ mixture of 2 and the novel triangular cluster $\mathrm{MoOs}_{2}(\mathrm{CO})_{11}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}(\mathbf{1})$.

Crystal data: $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{MoO}_{17} \mathrm{Os}_{2} \mathrm{P}_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{9} \mathrm{MoO}_{12}$ OsP, triclinic, $P \overline{1}, a 8.788(1)$, b 16.901(2), c 18.456(2) A, α 68.88(1), β 81.75(1), $\gamma 77.01(1)^{\circ}, Z=2$. The structure was solved by heavy atom methods and refined to $R=0.0395$ by least-squares using 2886 reflections with $I>2.5 \sigma(I)$ measured on a CAD4 diffractometer with Mo-K radiation. The triangular cluster showed a small degree of "Star of David" disorder.

[^0]

Fig. 1. The molecular structure of $\mathrm{MoOs}_{2}(\mathrm{CO})_{11}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2}$. Selected bond lengths (\AA) : $\mathrm{Mo}(13)-\mathrm{Os}(11)$ 3.079(2), $\mathrm{Os}(12)-\mathrm{Mo}(13) 3.041(2), \mathrm{Os}(11)-\mathrm{Os}(12) 2.854(1)$, $\mathrm{Os}(11)-\mathrm{P}(11) 2.300(7)$. $\mathrm{Os}(12)-\mathrm{P}(12) 2.271$ (7).

A view of $\mathbf{1}$ is shown in Fig. 1. As can be seen, it consists of a $\mathrm{Mo}(\mathrm{CO})_{5}$ and two $\mathrm{Os}(\mathrm{CO})_{3}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]$ units bonded in a triangular array; the geometry about the molybdenum atom is approximately pentagonal bipyramidal. The cluster may be considered as a phosphite-substituted derivative of the, as yet, unknown cluster $\mathrm{MoOs}_{2}(\mathrm{CO})_{13}$. The only other clusters containing $\mathrm{Mo}-\mathrm{Os}$ bonds in the literature are $(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Mo}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{12}(3),(\mu-\mathrm{H})_{3}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoOs}_{3}(\mathrm{CO})_{11}$ (4), and $(\mu-\mathrm{H})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoOs}_{3}(\mathrm{CO})_{14}$ recently reported by Shore and coworkers [5]. The unbridged $\mathrm{Os}-\mathrm{Mo}$ distances in $\mathbf{3}$ and $\mathbf{4}$ are significantly shorter (range $2.830(1)-2.952(1) \AA$) than the Os-Mo distances in 1 (3.041(2) and 3.079(2) \AA). This

Fig. 2. The molecular structure of $\left[(\mathrm{MeO})_{3} \mathrm{P}\right](\mathrm{OC})_{4} \mathrm{OsMo}(\mathrm{CO})_{5}$. Selected bond lengths $(\AA): \mathrm{Os}(1)-\mathrm{Mo}(1)$ 3.075(2), $\mathrm{Os}(1)-\mathrm{P}(1) 2.299(6)$.
may be a consequence of the more highly condensed nature of clusters 3 and 4; the $\mathrm{Os}-\mathrm{Os}$ bond lengths in $\mathrm{Os}_{n}(n>3)$ clusters are generally shorter than those in $\mathrm{Os}_{3}(\mathrm{CO})_{12}[6]$.

The crystal structure described here has the unusual feature of two chemically different molecules present in the unit cell in a $1 / 1$ ratio; there is no obvious chemical interaction between them. A view of the second molecule, 2 , is given in Fig. 2. It has a configuration similar to that previously found for $\left(\mathrm{Me}_{3} \mathrm{P}\right)(\mathrm{OC})_{4}^{-}$ $\mathrm{OsM}(\mathrm{CO})_{5}(\mathrm{M}=\mathrm{Cr}$ [3], W [2]) i.e., the 18 -electron osmium complex acts as a ligand toward the Group VI metal via an unbridged, donor-acceptor bond. It is of interest that the dative $\mathrm{Os}-\mathrm{Mo}$ bond in $\mathbf{2}$ is not significantly different from the covalent Os-Mo honds in 1.

We are currently investigating rational syntheses of 1 and related complexes. Prolonged reaction of 2 with excess $\mathrm{Os}(\mathrm{CO})_{4}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]$ does not yield 1. However, ultraviolet irradiation of a hexane solution of $\mathrm{Mo}(\mathrm{CO})_{4}$ (norbornadiene) and $\mathrm{Os}(\mathrm{CO})_{4}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]$ does produce 1 although still in low yield ($\sim 5 \%$). From this reaction 1 was isolated after chromatography as deep-red, air-stable crystals that were analytically pure ($\nu(\mathrm{CO}) 2084 \mathrm{w}, 2027$ s, 2016m, 2001vs, 1982w, 1974w, 1964w, $1951 \mathrm{~m}, 1936 \mathrm{~m}, \mathrm{~cm}^{-1}$, hexane solution).

Acknowledgements. We thank the Natural Sciences and Engineering Research Council and Simon Fraser University for financial support.

References

1 F.W.B. Einstein, R.K. Pomeroy, P. Rushman, and A.C. Willis, J. Chem. Soc. Chem. Commun., (1983) 854. F.W.B. Einstein, R.K. Pomeroy, P. Rushman, and A.C. Willis, Organometallics. 3 (1985) 250. F.W.B. Einstein, L.R. Martin, R.K. Pomeroy, and P. Rushman, J. Chem. Soc. Chem. Commun., (1985) 345.

2 F.W.B. Einstein, T. Jones, R.K. Pomeroy, and P. Rushman, J. Am. Soc., 106 (1984) 2707.
3 H.B. Davis, F.W.B. Einstein, P.G. Glavina, T. Jones, R.K. Pomeroy and P. Rushman, unpublished results.
4 L.R. Martin, F.W.B. Einstein, and R.K. Pomeroy, Inorg. Chem. 24 (1985) 2777.
5 L-Y Hsu, W-L Hsu, D-Y Jan, and S.G. Shore, Organometallics, 5 (1986) 1041.
6 For example: M.R. Churchill, C. Bueno, S. Kennedy, J.C. Bricker, J.S. Plotkin and S.G. Shore, Inorg. Chem. 21 (1982) 627.

[^0]: * Prepared from $\mathrm{Os}(\mathrm{CO})_{5}$ and $\mathrm{P}(\mathrm{OMe})_{3}$ [4].

